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Wigner rotations in laser cavities
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The Wigner rotation is important in many branches of physics, chemistry, and engineering sciences. It is a
group theoretical effect resulting from two Lorentz boosts. The net effect is one boost followed or preceded by
a rotation. While the term ‘‘Wigner rotation’’ is derived from Wigner’s little group whose transformations leave
the four-momentum of a given particle invariant, it is shown that the Wigner rotation is different from the
rotations in the little group. This difference is clearly spelled out, and it is shown to be possible to construct the
corresponding Wigner rotation from the little-group rotation. It is shown also that theABCD matrix for light
beams in a laser cavity shares the same mathematics as the little-group rotation, from which the Wigner
rotation can be constructed.
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I. INTRODUCTION

The term ‘‘Wigner rotation’’ is mentioned frequently i
many branches of physics. The earliest manifestation of
Wigner rotation is the Thomas precession that we observ
atomic spectra. Thomas formulated this problem 13 ye
before the appearance of Wigner’s 1939 paper@1,2#. The
Thomas effect in nuclear spectroscopy is mentioned in Ja
son’s book on electrodynamics@3#. Recently, as the relativ
istic effects come to play more prominent roles, the Wign
rotation has become one of the key issues in the field the
of extended objects@4#, electron beams@5#, relativistic quark
models@6,7#, nuclear scattering@8#, and neutrino physics@9#,
as well as many other areas of physics, chemistry, and e
neering sciences@10#.

If we perform two Lorentz boosts in different direction
the result is not a boost but a boost preceded or followed
a rotation. This rotation is commonly known as the Wign
rotation. However, if we trace the origin of this term, Wign
introduced the rotation subgroup of the Lorentz group wh
transformations leave the four-momentum of a given part
invariant in its rest frame. The rotation can, however, cha
the direction of its spin. Indeed, Wigner introduced the co
cept of a ‘‘little group’’ to deal with this type of problem
Wigner’s little group is the maximum subgroup of the Lo
entz group whose transformations leave the four-momen
of the particle invariant. The particle does not have to be
rest.

The question then is whether the Wigner rotation, as
derstood in the literature, is the same as the rotation ass
ated with the little group. We address this question and sh
that there is a nontrivial difference between these two ro
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tions. We show that there is always a Wigner rotation fo
given little-group rotation.

Furthermore, in this paper we report that light beams i
laser cavity perform little-group rotations, and thus the c
responding Wigner rotation. It is known that the geometri
optics of laser cavities is a form of lens optics. It is al
known that para-axial lens optics can be formulated in ter
of the Lorentz group. Thus, we can also formulate the cav
optics in terms of the Lorentz group. We thus expect to fi
effects of the Lorentz group in cavity optics also, and w
report one result in this paper.

As for the mathematical method, the Lorentz group is
sophisticated group based on 434 matrices. However, this
group shares the same algebraic properties as those
32 unimodular matrices (determinant51) with complex el-
ements or six real parameters. This group is called SL(2c)
and is the underlying language for 232 ABCD matrices in
optics. If we choose the matrices with real parameters
forms a subgroup Sp~2! with three independent parameter
This subgroup shares the same algebraic property as
three-dimensional Lorentz group applicable to two space
and one timelike coordinates. This group is commonly cal
O~2,1!.

The basic advantage of Sp~2! is its mathematical simplic-
ity, while it is rich in mathematical content. It does not r
quire professional knowledge of group theory to follow t
logic based on 232 matrices with three independent param
eters. This is the reason why it became the standard lang
in classical and quantum optics. This group is directly app
cable to squeezed states of light in the Wigner-function r
resentation of squeezed states@11#. This group has the sam
algebraic properties as SU~1,1! which is the standard lan
guage in the Fock-space representation of squeezed s
@11#. Since Sp~2! has a correspondence with O~2,1!, the
Wigner rotation or the Thomas precession is a meaning
operation in squeezed states of light@12#.

Another recent trend is that the Lorentz group is beco
ing prominent in classical optics, including polarization o
©2002 The American Physical Society04-1
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tics @13#, interferometers@14#, and multilayer optics@15,16#.
As for lens optics, the formalism starts with 232 matrices
representing a lens and a translation. Repeated applica
of these matrices leads to a 232 matrix representing Sp~2!.
Thus, the fundamental scientific language in lens optic
clearly the group Sp~2! @17,18#, which shares the same alg
braic properties as those of the Lorentz group O~2,1!. We can
therefore explain what happens in lens optics in terms
items in special relativity such as Wigner rotation
Iwasawa decomposition. Since laser optics is derivable fr
lens optics, we can do the same for laser cavities.

In Sec. II, we show that the Thomas precession is a s
cial case of the Wigner rotation. We also discuss in detail
rotation contained in Wigner’s little group for massive pa
ticles. It is shown that this little-group rotation is not th
Wigner rotation as known in the literature, but these t
rotation angles are related. In Sec. III, we use a group th
retical technique to achieve a simplied derivation of t
ABCD beam transfer matrix for laser cavities. This mat
takes the same form as that of Wigner’s little-group transf
mation matrix. In Sec. IV, we discuss how we can derive
parameters of the Wigner rotation from the geometry of
laser cavity.

II. WIGNER ROTATIONS AND LITTLE GROUPS

In the literature, the Wigner rotation comes from two su
cessive noncollinear Lorentz boosts. If we boost along thz
axis first and then make another boost along a direction
makes an arbitrary angle with thez axis in thezx plane, the
result is another Lorentz boost preceded by a rotation. T
rotation is known as the Wigner rotation in the literature.

In the metric (t,z,x,y), the rotation matrix which per-
forms a rotation around the y axis by an anglef is

R~f!5S 1 0 0 0

0 cosf 2sinf 0

0 sinf cosf 0

0 0 0 1

D , ~1!

and its inverse isR(2f). The boost matrix along thez di-
rection takes the form

B~0,h!5S coshh sinhh 0 0

sinhh coshh 0 0

0 0 1 0

0 0 0 1

D . ~2!

If this boost is made along thef direction, the matrix is

B~f,h!5R~f! B~0,h! R~2f!, ~3!

and its inverse isB(f,2h).
Let us start with a particle at rest with its four-momentu

Pa5~m,0,0,0!. ~4!
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Then we boost this four-momentum along thez direction to
make

Pb5m~coshh,sinhh,0,0!. ~5!

The corresponding Lorentz-boost matrix of the Sp~2! group
is

B15S eh/2 0

0 e2h/2D . ~6!

The kinematics is illustrated in Fig. 1.
In deriving the above result, it is sufficient to use 333

matrices applicable to the three-dimensional space
(t,z,x). The group of these 333 matrices is called O~2,1!. If
we use Sp~2!, the 333 matrix algebra of O~2,1! can be
reduced to the algebra of 232 matrices. This is a significan
mathematical simplification. Furthermore, this correspo
dence allows us to interpret the physics of Lorentz trans
mations in terms of what we observe in optics laboratori
and vice versa. With this point in mind, we shall exclusive
use 232 matrices of Sp~2! in the rest of this paper.

If we rotatePb around they axis by an angleu, then the
resulting four-momentum is

Pc5m„coshh,~sinhh!cosu,~sinhh!sinu,0…. ~7!

The rotation matrix that performs this operation is equival
to

R~u!5S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D . ~8!

Instead of this rotation, we propose to obtain this fo
vector by boosting the four-momentum of Eq.~5!. It is te-
dious but straightforward to calculate this boost matrix, a

FIG. 1. Closed Lorentz boosts. Initially, a massive particle is
rest with its four-momentumPa . The first boostB1 brings Pa to
Pb . The second boostB2 transformsPb to Pc . The third boostB3

bringsPc back toPa . The particle is again at rest. The net effect
a rotation around the axis perpendicular to the plane contain
these three transformations. We may assume for convenience
Pb is along thez axis, andPc in the zx plane. The rotation is then
made around they axis.
4-2
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this calculation was carried out by Hanet al. in 1987 @19#.
Let us call this boost matrixB2. In the 232 formalism,B2
takes the form

B25S a2 b

b a1
D , ~9!

with

a65cosh~l/2!6 sin~u/2!sinh~l/2!,

b5cos~u/2!sinh~l/2!,

l52 tanh21$~ tanhh!sin~u/2!%. ~10!

Next, we boost the four-momentum of Eq.~7! to that of
Eq. ~4!. The particle is again at rest. The boost matrix is

B35R~u!B1
21R~2u!. ~11!

It is straightforward to calculate this 232 matrix from the
boost matrix of Eq.~6! and the rotation matrix of Eq.~8!.

The net result of these transformations isB3B2B1. This
leaves the initial four-momentum of Eq.~4! invariant. Is it
going to be an identity matrix? The answer is ‘‘No.’’ Th
result of the matrix multiplications is a rotation matrix of th
form given in Eq.~8!, but with the rotation anglev, where

tanv5
sinu@g2cos2~u/2!1g#

cosu@g2cos2~u/2!1g#1coshh
, ~12!

with g5(coshh21). This expression can be derived fro
sin(v/2) given in Ref.@19#. This matrix performs a rotation
around they axis and leaves the four-momentum of Eq.~4!
invariant. It can now be written as

B3B2B15R~v! ~13!

or

B2B15B3
21R~v!. ~14!

This kinematics is the basis for the Thomas precess
@19,20#.

Let us examine next why this rotation is called the Wign
rotation. In his 1939 paper@2# on the Lorentz group Wigne
did not introduce this rotation. There he introduced the c
cept of little groups, which are the maximum subgroups
the Lorentz group whose transformations leave the fo
momentum of a given particle invariant. He observed t
the little group for a massive particle is the rotation subgro
of the Lorentz group in the Lorentz frame in which the pa
ticle is at rest. This rotation is not the same as the Wig
rotation discussed above.

Wigner’s little group is not restricted to particles at re
Then, is there a little group which leaves the four-moment
Pb of Eq. ~5! invariant? In order to answer this question,
us go back to Eq.~13!. There we can writeB3 as

B~u,2h!5R~u!B~0,2h!R~2u!. ~15!
02660
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Then Eq.~13! becomes

R~u!B~0,2h!R~2u!B~c,l!B~0,h!5R~v!, ~16!

which can be written as

R~2u!B~c,l!5B~0,h!R~v2u!B~0,2h!. ~17!

The inverse of this expression is

B~c,2l!R~u!5B~0,h!R~a!B~0,2h! ~18!

with

a5u2v or u5a1v. ~19!

Here, we have introduced the anglea as a redefinition of the
Wigner rotation angle for a given value ofu, but it has its
own physical significance: When applied toPb , both the
right-hand side and the left-hand side of Eq.~18! leavePb
invariant. This kinematics is clearly illustrated in Fig. 2.

Then, we can write

B1R~a!B1
215B2

21R~u!, ~20!

which enables us to calculate the rotation anglea in terms of
h andu:

tana5
sinu coshh

cosu cosh2h1~cosh2h21!sin2~u/2!
. ~21!

This expression can also be derived from the 1986 pape
Han et al. where cosa is given @21#.

FIG. 2. Little group and Wigner rotation associated with t
four-momentumPb . This momentum can be rotated toPc by R(u).
It can then be boosted back toPb through the inverse ofB2. This
operation corresponds to the right-hand side of Eq.~20!. The net
result is not an identity matrix, but a transformation which leav
the four-momentumPb invariant. The same effect can be achiev
by a Lorentz-boosted rotation matrix that appears in the left-h
side of Eq.~20!. The momentumPb is first boosted toPa by the
inverse ofB1. We can then rotate the system without changing
momentum. This rotation will change the direction of the spin. T
particle can then be brought to its initial momentumPb by the boost
matrix B1. The net result is a transformation that does not cha
the momentumPb . The anglea in the transformation of Eq.~20! is
precisely the Wigner rotation angle.
4-3
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Now that we have given expressions for the anglesa and
v, it is worthwhile to check our calculations by carrying o
the tangent addition rule:

tanu5tan~a1v!5
tana1tanv

12tana tanv
, ~22!

using the expressions for tana and tanv given in Eqs.~12!
and~21!, respectively. The result is consistent with the ad
tion rule of Eq. ~19!. Indeed, each little-group rotation i
accompanied by a Wigner rotation.

Let us now write the left-hand side of Eq.~20! as

S eh/2 0

0 e2h/2D S cos~a/2! 2sin~a/2!

sin~a/2! cos~a/2!
D S e2h/2 0

0 eh/2D .

~23!

Now, these three matrices can be combined into one ma

S cos~a/2! 2ehsin~a/2!

e2hsin~a/2! cos~a/2!
D . ~24!

This mathematical form is quite common in the literature
lasers@22–24#.

Let us go back to Eq.~23!. In order to construct the maxi
mum subgroup of the Lorentz group which leaves the fo
momentum of the given particle invariant, we bring the p
ticle to its rest frame, and then perform rotations wh
leaving the four-momentum of the rest particle invariant. W
then boost the particle to its original frame. During this pr
cess, the four-momentum remains invariant, but its spin
entation will be changed. It is gratifying to note that this is
conjugate transformation from the group theoretical point
view. Indeed, the little group of a massive particle with
nonzero momentum is a conjugate rotation subgroup of
Lorentz group. We shall note in the following sections th
the conjugate transformations in the 232 matrix representa
tion can play an important role in our understanding of be
transfer matrices.

III. WIGNER’S LITTLE GROUP IN LASER CAVITIES

We are now ready to discuss what is happening in a la
cavity. Let us consider for simplicity a cavity consisting
two identical concave mirrors separated by a distanced.
Then theABCD matrix for a round trip of one beam is

S 1 0

22/R 1D S 1 d

0 1D S 1 0

22/R 1D S 1 d

0 1D , ~25!

whereR is the radius of the mirror. This form is quite fami
iar to us from the laser literature@22–24#. However, the cru-
cial question is what happens when this process is repe
many times. This question has also been addressed in
literature. For this purpose, Haus replaces one of the con
mirrors with a flat mirror and repeats the process in orde
complete the cycle@23#.

In this section, we propose to eliminate the auxiliary fl
mirror by using a group theoretical concept, but with
simple matrix algebra. As is illustrated in Fig. 3, the trad
02660
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tional cycle starts from one of the mirrors, but we start he
from the midpoint between the mirrors. In order to achie
this mathematically, we write Eq.~25! as

S 1 2d/2

0 1 D S 1 d/2

0 1 D S 1 0

22/R 1D S 1 d/2

0 1 D
3S 1 d/2

0 1 D S 1 0

22/R 1D S 1 d/2

0 1 D S 1 d/2

0 1 D . ~26!

In this way, we translate the system byd/2 using a transla-
tion matrix, and write theABCD matrix of Eq.~25! as

S 1 2d/2

0 1 D F S 12d/R d2d2/2R

22/R 12d/R D G2S 1 d/2

0 1 D . ~27!

Furthermore, the matrix in the middle can be written as

S 12d/R d2d2/2R

22/R 12d/R D
5S Ad 0

0 1/Ad
D S 12d/R 12d/2R

22d/R 12d/R D
3S 1/Ad 0

0 Ad
D . ~28!

It is then possible to decompose theABCD matrix into the
‘‘core’’ matrix C and the ‘‘escort’’ matrixE:

EC2E21, ~29!

with

C5S 12d/R 12d/2R

22d/R 12d/R D
E5S 1 2d/2

0 1 D S Ad 0

0 1/Ad
D . ~30!

If the process is repeatedN times, the result is

EC2NE21. ~31!

FIG. 3. Cycles in cavity and mirror optics. One complete cyc
between the mirrors in a cavity is equivalent to the beam go
through two lenses. The issue is where we can start the cycle.
shown in this paper that we can eliminate the auxiliary mir
needed in the traditional cycle by starting the cycle at the midpo
between the mirrors or the lenses.
4-4
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With this expression, we can concentrate on the core ma
C, and write this in the form

C5S cosf 2ejsinf

e2jsinf cosf D ~32!

with

cosf512
d

R
, e2j5

R

2d
2

1

4
. ~33!

Here bothd andR are positive, and the restriction on them
that d be smaller than 2R. This is the stability condition
frequently mentioned in the literature@23,24#.

Let us next write the core matrixC as

S eh/2 0

0 e2h/2D S cosf 2sinf

sinf cosf D S e2h/2 0

0 eh/2D . ~34!

Here, a rotation matrix is sandwiched between a sque
matrix and its inverse. This expression is exactly of the fo
of Eq. ~23! for the little-group rotation.

If the light beam makes one cycle, the effect isC2, and its
expression is

C25S eh/2 0

0 e2h/2D S cos~2f! 2sin~2f!

sin~2f! cos~2f!
D S e2h/2 0

0 eh/2D .

~35!

Indeed, the beam makes a little-group rotation of 2f when it
completes one cycle.

If the light beam makesN round trips, we have to com
puteC2N, and the result is

C2N5S eh/2 0

0 e2h/2D S cos~2Nf! 2sin~2Nf!

sin~2Nf! cos~2Nf!
D

3S e2h/2 0

0 eh/2D ~36!

or

C2N5S cos~2Nf! 2ehsin~2Nf!

e2hsin~2Nf! cos~2Nf!
D . ~37!

In this paper, we noted first that the matrices in le
mirror optics can be formulated in terms of the thre
parameter Sp~2! group. Because of the correspondence
tween Sp~2! and SO~2,1!, we expect Wigner rotations in thi
branch of physics, and we have shown that light beams
form little-group rotations in the laser cavity.

We considered here only the simplest cavity consisting
two identical mirrors. However, there are other interest
cavities@22# and their combinations. It would be an interes
ing project to exploit fully the Lorentz-group content of the
optical systems.
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IV. WIGNER ROTATIONS IN LASER CAVITIES

In Sec. II, we emphasized that the anglea, not v, is the
rotation angle directly associated with Wigner’s little grou
We could therefore insist thatR(a) is the Wigner rotation or
the original Wigner rotation, as Hanet al. did in 1988@25#.
On the other hand, sinceR(v) is widely known as the
Wigner rotation in the literature, we choose to callv the
Wigner rotation angle.

Is it possible to construct this angle from one cycle of t
beam transfer in a laser cavity? The answer is ‘‘Yes.’’ T
kinematics of Fig. 2 is essentially the same as that of Fig
as we noted in Sec. II.

The laser cavity gives the two parametersh anda. From
them, it is possible to calculate the angleu. From Eq.~21!,
the expression foru becomes

u52 tan21~sin~a/2!Acoshh!, ~38!

and, according to Eq.~19!, the Wigner rotation anglev is

v5u2a. ~39!

Indeed, one Wigner rotation corresponds to the beam go
through one cycle in the laser cavity.

V. CONCLUDING REMARKS

The group Sp~2! is an algebra of 232 matrices with unit
determinant. Its elements are real numbers, and there
three independent parameters. It does not require a g
theoretical background to deal with these 232 matrices.
However, these matrices generate many interesting m
ematical results useful in understanding physics.

This group shares the same algebraic property as o
groups, such as SU~1,1!, which is the basic scientific lan
guage of squeezed states of light@11,26#. This Sp~2! group is
also the underlying language for classical optics, includ
multilayer optics and lens optics@16,18#. If expanded to
SL(2,c), this group can serve as the basic language for
larization optics and interferometers@13,14#. We have seen
in this paper that this group again is the basic language
laser cavities.

In addition, the group Sp~2! shares the same algebra
properties as the group of Lorentz transformations, ca
O~2,1!, applicable to a space consisting of two space dim
sions and one time dimension. This allows us to interp
what is happening in optics in terms of the language of s
cial relativity, and vice versa. Indeed, this group is power
enough to combine relativity and optics into one broad-ba
scientific discipline.

The term ‘‘Wigner rotation’’ is commonly used in the lit
erature. The reason is that Wigner observed that the l
group applicable to a relativistic particle is the thre
dimensional rotation group in the Lorentz frame where
particle is at rest. We noted in this paper that there is
difference between this rotation and the Wigner rotat
commonly mentioned in the literature. We have clarified t
difference in this paper.
4-5
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